
SlimExc

User Manual

A deterministic exception handling implementation for C++ with GCC

Documentation version: 0.9.0

for SlimExc-plugin version: 0.9.0

and SlimExc-library version: 0.9.0

Document license: CC BY-SA

Philipp Rimmele - developer@philipp-rimmele.de Valentin Felder - fritz-valentin@web.de

June 16, 2024

Contents

1 Environment . 3
1.1 GCC and Platform compatibility . 3
1.2 Toolchain . 3
1.3 Library . 3
1.4 User de�ned functions . 4
1.5 Other dependencies . 4

2 Con�guration . 4
2.1 Parameters . 5
2.2 Examples . 6
2.3 Using �ltering to exclude Code sections . 7

3 Deviations from C++-Standard . 7
3.1 Working with precompiled code . 7
3.2 Multiple and virtual inheritance . 8
3.3 Noexcept keyword . 8
3.4 �Extern C� is treated as �noexcept� . 8
3.5 Stack unwinding in case of std::terminate . 8
3.6 Exception Size limit . 8
3.7 Maximal pointer depth . 8

4 Known issues . 8
5 Bug reporting . 8

2

1. Environment

The Slim-Exception-System consists of the compiled GNU Compiler Collection (GCC) plugin (binary �SlimExc�),
the Slim-exception handling library (SlimExcLib) and 3 user de�ned functions (subsection 1.4).

1.1 GCC and Platform compatibility

The current version of the Slim-Exception-Plugin (0.9.0) is successfully tested with the following versions of the
GCC on the following platforms:

Target platform
Development platform

x64 Linux* x64 Windows

x64 Linux* 10.1.0, 10.2.0, 10.3.0,
10.4.0, 11.1.0, 11.2.0,
11.3.0

-

x64 Windows - -
ARM-none-eabi 10.3.1 -

* Tested on Ubuntu18.04 and OpenSUSE Tumbleweed

The same plugin-binary was used on all platforms. It is not unlikely the Slim-Exception-Plugin will also work
on other target platforms. However, it is con�rmed that GCC-Versions 9.* and 12.* do not work properly to full
extent. For testing it with unveri�ed GCC-versions the version check can be disabled as shown in Listing 5.

1.2 Toolchain

The g++ call scheme to compile your source-File with the Slim-Exception-Plugin is shown in Listing 1.

� The parameter �-fplugin� speci�es the Path to the Slim-Exception-Plugin Executable and enables its usage.

� The plugin parameters are listed in subsection 2.1. If not speci�ed, default values will be used.

� C++-17 or newer must be used.

� The optional GCC parameter �-fno-rtti� is used to disable the C++ runtime type information system. It
may only be used if the Slim-Exception-Plugin is con�gured to use its own SlimRTTI mechanism instead
(section 2).

� In order for the Slim-Exception-System to work properly it is necessary to keep the C++ standard exception
handling enabled. The �ag �-fno-exceptions� must not be used.

� All other GCC-Flags and GCC-Parameters as well as the linker can be used as usual.

1 g++ -fplugin={pathToPlugin}/SlimExc [plugin parameters] -std=c++17 [-fno-rtti] [other gcc parameters]

{pathToCppFile}

Listing 1: Call scheme of the C++-Compiler with the Slim-Exception-Plugin

1.3 Library

The Slim-Exception handling library needs to be included in all project �les which use exception handling mech-
anisms. It may be convenient to include the library in form of a git submodule (Listing 2).

1 git submodule add https://oko.spdns.de/git/admin/projects/oko/DeterministicExceptionHandlingLibrary

Listing 2: Command to add the library as git submodule to your project

3

1.4 User de�ned functions

In order for the system to function, the user is required to provide an implementation of the functions �Ex-
ceptionState::getCurrentExceptionState�, �ExceptionState::setCurrentExceptionState� in the namespace �SlimEx-
cLib� and �std::terminate� if not already de�ned.
The implementation must provide an initial ExceptionState object as well as an updatable pointer which ini-
tially points to the initial ExceptionState object for each thread. A minimal example implementation for a single
threaded system is shown in Listing 3.

� �SlimExcLib::ExceptionState::getCurrentExceptionState� must return a pointer to the active ExceptionState
object of the current thread.

� �SlimExcLib::ExceptionState::setCurrentExceptionState� must update the pointer to the active Exception-
State object of the current thread.

� �std::terminate� see https://en.cppreference.com/w/cpp/error/terminate

1 #include "SlimExcLib.hpp"

2

3 namespace SlimExcLib

4 {

5 ExceptionState baseExceptionState(NULL);

6 ExceptionState* pCurrentExceptionState = &baseExceptionState;

7

8 ExceptionState* ExceptionState::getCurrentExceptionState(void) noexcept

9 {

10 return pCurrentExceptionState;

11 }

12

13 void ExceptionState::setCurrentExceptionState(ExceptionState* newInstance) noexcept

14 {

15 pCurrentExceptionState = newInstance;

16 }

17 }

18

19 [[noreturn]] void std::terminate() noexcept

20 {

21 while(1){};

22 }

Listing 3: Minimal example implementation of the necessary user de�ned functions

1.5 Other dependencies

The Slim-Exception-System depends on a de�nition of the placement-new and placement-delete operator. Those
are declared as �extern� in the Slim-Exception-Library. Other than that there are no dependencies to the C++-
standard-library and the code can be compiled with the �-nodefaultlibs�-�ag.

2. Configuration

It is possible to change the behavior of the Slim-Exception-System by using either commandline parameters or a
XML-Con�guration File. The default con�guration is set to o�er a maximal standard-compatibility as described
in section 3. It is possible to restrict the features of the System for a possibly better performance and code size.

4

https://en.cppreference.com/w/cpp/error/terminate

2.1 Parameters

XML CMD-Parameter Values/Description
*-con�g= Path to XML-Con�guration-File

Exceptions/
SlimExceptions

*-f-SlimExc
*-fno-SlimExc

Enabled/Disabled
Enables/Disables the usage of the Slim-Exceptions (The
Plugin itself still remains enabled but the default
Exception-Code is not modi�ed)

Exceptions/
ThrowableTypes

*-ThrowableTypes= All - Maximal Functionality, allows throwing all In-
stances (most memory and runtime costs)
Fundamental - Restricts the system to only allow throw-
ing non-class-Types (reduced memory and runtime costs)
Single - Restricts the system to only allow throwing a sin-
gle Type, which is speci�ed by �SingleType�. (Minimal
memory and runtime costs)

Exceptions/
SingleType

*-SingleType= char, schar, uchar, ushort, short, uint, int, ulong,
long, ulonglong, longlong, �oat, double
De�nes the type which is allowed to be thrown if �Throw-
ableTypes�=�Single�.

Exceptions/
Bu�ersize

*-Bu�ersize= Range: 1 - n, Default: 10
The size of the Exceptionbu�er in Bytes.

RTTI/
SlimRTTI

*-f-SlimRTTI
*-fno-SlimRTTI

Enabled/Disabled
Enables/Disables the usage of the SlimRTTI-System for
the Exception-matching. If Disabled, the default RTTI-
System must be enabled instead (not using -fno-rtti).

RTTI/
PointerTypes

*-f-PointerTypes
*-fno-PointerTypes

Enabled/Disabled
Enables/Disables Pointer-Types in the SlimRTTI-
System. (Reduced memory and runtime costs if Disabled)

RTTI/
Quali�ers

*-f-Quali�ers
*-fno-Quali�ers

Enabled/Disabled
Enables/Disables Quali�ers (const) in the SlimRTTI-
System. If Disabled, const-Quali�ers are not taken into
account on Exception-matching! (Reduced memory and
runtime costs if Disabled)

Filters/
InitIgnoreFile

*-f-InitIgnoreFile
*-fno-InitIgnoreFile

Enabled/Disabled
Enables/Disables the initialization of the IgnoreFile with
a list of used Namespaces, Classes and Functions/Meth-
ods. If Enabled, the Slim-Exception-System is automati-
cally disabled. This can be used as a starting point for a
custom Blacklist/Whitelist to exclude partial code from
being handled with the Slim-Exception-System.

5

Filters/
InitFiltered

*-f-InitFiltered
*-fno-InitFiltered

Enabled/Disabled
Enables/Disables �ltering for the initialization of the Ig-
noreFile. If Enabled, the current Blacklist/Whitelist is
already applied to initialization.

Filters/
WhitelistStrategy

*-f-WhitelistStrategy
*-fno-WhitelistStrategy

Enabled/Disabled
Enabled = Whitelist
Disabled = Blacklist

Filters/
IgnoreFile

*-IgnoreFile= Default: empty
Path to the XML-Filter-File which is used as Black-
list/Whitelist to exclude partial code from being handled
with the Slim-Exception-System. This path is also used
for initializing the File when �InitIgnoreFile� is enabled.
If empty, �ltering is disabled completely.

Diagnostics/
WrongGCCVersion

*-WrongGCCVersion= Ignore, Info, Warning, Error
Message when the GCC-Version is not compatible with
the plugin binary. It might still work, so it is possible
to decrease the Diagnostic-Level. But this can lead to
undocumented problems!

Diagnostics/
StdTerminateOn
Exception

*-StdTerminateOn
Exception=

Ignore, Info, Warning, Error
Message when an exception is thrown which is never
caught, leading to a guaranteed call of �std::terminate�.

Diagnostics/
PossiblyUncaught
Exception

*-PossiblyUncaught
Exception=

Ignore, Info, Warning, Error
Message when an exception could propagate out of a non-
throwing region. This can be the case when a �try-catch�-
block within a �noexcept� section doesn't include a catch-
all handler.

Debugging/
Verbose

*-f-Verbose
*-fno-Verbose

Enabled/Disabled
Enables/Disables additional outputs while traversing the
Abstract syntax tree (AST).

Debugging/
GenerateAST

*-f-GenerateAST
*-fno-GenerateAST

Enabled/Disabled
Enables/Disables the printing of the AST. Two �les in
the Debugging-Directory are generated for each function,
one with the unmodi�ed and one with the modi�ed AST.

Debugging/
Directory

*-Debugging-Directory= Default: empty
Path to the Debugging-Directory, is used by �Gener-
ateAST�.

* Commandline Parameter Pre�x: -fplugin-arg-SlimExc
_ underlined: Default Values.

2.2 Examples

The following examples show the usage of some of the command line parameters:

6

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-config={pathToPluginConfig}/pluginConfig.xml

-std=c++17 -O3 -g3 -Wall -fno-rtti -c -o "myFile.o" myFile.cpp

Listing 4: Using the XML-Con�g-File

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-WrongGCCVersion=Warning -std=c++17 -c -o

"myFile.o" myFile.cpp

Listing 5: Using a di�erent GCC-Version (be aware, this can result in undocumented error-Messages)

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-IgnoreFile={pathToMyFilterFile}/ignore.xml

-fplugin-arg-SlimExc-f-InitIgnoreFile -std=c++17 -c -o "myFile.o" myFile.cpp

Listing 6: Generating found Entries in a Filter-File

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-IgnoreFile={pathToMyFilterFile}/ignore.xml

-fplugin-arg-SlimExc-f-WhitelistStrategy -std=c++17 -c -o "myFile.o" myFile.cpp

Listing 7: Using a Filter-File as Whitelist

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-ThrowableTypes=Single

-fplugin-arg-SlimExc-SingleType=short -std=c++17 -c -o "myFile.o" myFile.cpp

Listing 8: Allow only throwing �short�-Types

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-Debugging-Directory={pathToDirectory}

-fplugin-arg-SlimExc-f-GenerateAST -std=c++17 -c -o "myFile.o" myFile.cpp

Listing 9: Print the ASTs for Debugging in a Directory

2.3 Using �ltering to exclude Code sections

In order to exclude precompiled libraries or legacy code without �noexcept�-declarations it is possible to use an
ignore�le (as shown in Listing 7).
To avoid having to write the ignore�le manually, it is possible to use the �initIgnoreFile�-Option as shown in
Listing 6. This initializes the ignore�le's XML-Structure and generates a list of all Namespaces, Classes and
Functions which can be copy-pasted into the blacklist/whitelist section of the ignore�le.
Adding an empty XML-Tag for a Namespace or a Class selects everything inside of this Namespace or Class as
well.

3. Deviations from C++-Standard

The following deviations are based on the assumption that Slim-Exception-Plugin is con�gured with its default
values which represent the full function range. It is possible to reduce the function range and thus the C++
standard conformity in favor of better performance in the con�guration (section 2).

3.1 Working with precompiled code

If standard exception are thrown from precompiled code (without the Slim-Exception-Plugin), those can not be
handled by the Slim-Exception-System! Equally no exceptions from the Slim-Exception-System can be handled
by precompiled code! Further it is highly recommended to exclude all precompiled code by the �ignoreList�
con�guration in order to avoid unnecessary runtime overhead (subsection 2.1).

7

3.2 Multiple and virtual inheritance

Multiple and virtual inheritance is currently not supported for classes which get thrown as exception objects by
the system.

3.3 Noexcept keyword

To minimize the runtime overhead it is highly recommended to use the o�cial C++ keyword �noexcept� on all
function and method de�nitions which do not throw. Unlike the C++ standard behavior, the Slim-Exception-
System does not allow exceptions to propagate through functions or methods which are marked as �noexcept�.

3.4 �Extern C� is treated as �noexcept�

All functions declared as �extern C� are treated as if declared �noexcept(true)�. Throwing from �extern C�-Functions
is not allowed with the Slim-Exception-System.

3.5 Stack unwinding in case of std::terminate

When a condition is met which leads to a call of �std::terminate�, the call is immediately executed without a
preceding stack unwinding. Thus, the objects on the stack don't get properly destructed. In practice this should
not be a problem, because a call to �std::terminate� ends the execution of the program. However, if the Destructors
are used to disable some physical periphery this can be a critical deviation from the standard. It is recommended
to implement all necessary hardware shutdowns in the �std::terminate�-routine.

3.6 Exception Size limit

The size of all thrown exception object must be lower or equal to the con�gured Bu�er Size (bu�ersize in con�g-
uration subsection 2.1).

3.7 Maximal pointer depth

If the SlimRTTI-System is used, the maximal pointer depth of thrown exceptions is 7.

4. Known issues

� On arm-none-eabi systems, an Implementation of the functions �__aeabi_unwind_cpp_pr0� and �__ae-
abi_unwind_cpp_pr1� is required but may be left empty.

5. Bug reporting

If any bugs are encountered, please follow these instructions to �le a report:

1. Compile the program without the Slim-Exception-System and verify it's correctness to make sure the error
actually is in the Slim-Exception-System.

2. Extract a minimal example which reproduces the bug from your code.

3. Send an E-Mail including

� the minimal code example

� a description of the bug

8

� the version numbers of SlimExc and GCC

� the target- and build platforms

� any possibly occurring compiler- or runtime errors

to developer@philipp-rimmele.de

9

	Environment
	GCC and Platform compatibility
	Toolchain
	Library
	User defined functions
	Other dependencies

	Configuration
	Parameters
	Examples
	Using filtering to exclude Code sections

	Deviations from C++-Standard
	Working with precompiled code
	Multiple and virtual inheritance
	Noexcept keyword
	''Extern C'' is treated as ''noexcept''
	Stack unwinding in case of std::terminate
	Exception Size limit
	Maximal pointer depth

	Known issues
	Bug reporting

