
SlimExc

Documentation

A deterministic exception handling implementation for C++ with GCC

Documentation version: 0.9.0

for SlimExc-plugin version: 0.9.0

and SlimExc-library version: 0.9.0

Document license: CC BY-SA

Philipp Rimmele - developer@philipp-rimmele.de Valentin Felder - fritz-valentin@web.de

June 16, 2024

Contents

1 Motivation . 4
1.1 Status quo . 4
1.2 The goal of SlimExc . 4

2 Working principle . 4
2.1 Return based approach . 4
2.2 Exception storage on the stack . 5
2.3 Runtime and memory behavior . 5

3 Implementation . 6
3.1 Slim-Exception-Library . 6
3.2 Semantic code replacements . 9

3.2.1 Try-catch-blocks . 9
3.2.2 Throw expression . 10
3.2.3 Implicit rethrow expression . 10
3.2.4 Calling potentially throwing functions or methods 11
3.2.5 Additional notes . 12

3.3 Slim-Exception-Plugin . 12
3.3.1 Development toolchain . 12
3.3.2 Used Plugin Callbacks . 12
3.3.3 Implementation of the AST modi�cations . 13
3.3.4 Compiletime errors and messages . 13

3.4 SlimRTTI-System . 13
3.4.1 Header overview . 14
3.4.2 Generation of unique type-IDs . 15

4 Usage . 16
4.1 Environment . 16

4.1.1 GCC and Platform compatibility . 16
4.1.2 Toolchain . 16
4.1.3 Library . 17
4.1.4 User de�ned functions . 17
4.1.5 Other dependencies . 17

4.2 Con�guration . 18
4.2.1 Parameters . 18
4.2.2 Examples . 20
4.2.3 Using �ltering to exclude Code sections . 20

4.3 Deviations from C++-Standard . 20
4.3.1 Working with precompiled code . 21
4.3.2 Multiple and virtual inheritance . 21
4.3.3 Noexcept keyword . 21
4.3.4 �Extern C� is treated as �noexcept� . 21

2

4.3.5 Stack unwinding in case of std::terminate . 21
4.3.6 Exception Size limit . 21
4.3.7 Maximal pointer depth . 21

4.4 Known issues . 21
4.5 Bug reporting . 22

5 Benchmarks . 22
5.1 Code size . 22
5.2 Execution speed . 22

6 The future of SlimExc . 23

Acronyms 25

Bibliography 26

Credits and licenses 27

3

1. Motivation

1.1 Status quo

The C++ standard exception handling implementation is not deterministic in the sense that no upper bound for
the runtime and memory usage can be statically calculated [1, chapter 2.5]. Also the error path has a signi�cantly
increased runtime compared to the success path. Beyond that the initial size of the library which implements the
necessary functionalities is not negligible on smaller systems. section 5
This makes it unsuitable for systems which are either time-, memory-, or safety-critical. For this reason the
exception handling gets banned partially or completely in over 50% of all C++ projects [1, chapter 2.1]. Many
projects resort to using other means of error handling, which can only ever represent a non-standard dialect of
C++ and come with their own drawbacks [1, chapter 3.1].

1.2 The goal of SlimExc

SlimExc aims to provide an alternative implementation of the C++ exception handling mechanisms, which is
standard-conform to a high degree (Deviations from the standard are listed in subsection 4.3), while avoiding
many of the issues of the standard implementation. Mainly, SlimExc

� is runtime deterministic

� is memory deterministic

� has a minimal library overhead

� has a comparable runtime on both the error- and success paths

� has the same syntax and semantics as standard try-catch exception handling

� supports dynamically typed exception objects

� integrates seamlessly into the GNU Compiler Collection (GCC) toolchain

2. Working principle

2.1 Return based approach

Every time an exception is thrown, the normal program execution must be interrupted and continued at the ap-
propriate catch site. Therefore the stack must be unwound in some way until the the stackframe of the catch site
is reached. In the C++ standard exception handling implementation this is done with a special stack-unwinding
routine, which also takes care of the destructor calls for all objects on the stack. This routine is very runtime
intensive as shown in subsection 5.2. More details about the standard implementation can be found at [2].
The Slim-Exception-Implementation instead uses return statements to unwind the stack. The return semantics
also imply that all destructors for objects on the stack are called. A schematic overview of the di�erent control
�ows is shown in Figure 1 and Figure 2.

4

Figure 1: Control �ow of default exception handling Figure 2: Control �ow of Slim-Exception-handling

In the standard implementation the success and error paths are fully distinct. Therefore there is no e�ective
runtime overhead in the success path, but there is a signi�cant non-deterministic runtime overhead in the error
path. In the return based approach the same return mechanism is used for the error and success paths. To
distinguish between error and success, additional checks must be inserted. This only leads to a small deterministic
runtime overhead for both paths.

2.2 Exception storage on the stack

In the C++ standard exception handling implementation the exception object is either stored on the Heap (dy-
namic memory) or on the stack of the throw-site (stack-pinning). Both, stack-pinning and dynamic memory
allocation, are not space- and/or time deterministic. More details about the standard implementation can be
found at [2].

The Slim-Exception-Implementation instead stores the exception object on the stack of the catch site. Therefore,
no stack-pinning is needed. To realize this mechanism it is necessary to allocate the memory of the largest possible
exception object already when a try-block is entered. This leads to a constant (deterministic) memory overhead
for both the success and error paths.

2.3 Runtime and memory behavior

The focus of the C++ standard exception handling implementation is to have a minimal runtime overhead in the
success path, which is achieved with a rather signi�cant non-deterministic runtime overhead in the (exceptional)
error path. The focus of the Slim-Exception-Implementation is to have a deterministic space and runtime overhead
in both paths.

The exception handling library of the standard implementation also results in a signi�cant program-size overhead
if any exceptions are used. The Slim-Exception-Implementation has a minimal library size, but adds a small
additional program-size overhead for each usage of exception handling mechanisms.

A comparison between the overheads of the di�erent implementations is made in section 5.

5

3. Implementation

3.1 Slim-Exception-Library

The core functionality of the Slim-Exception-System is implemented in the class �ExceptionState� within the Slim-
Exception-Library. A instance of this class exists for each try-catch-block. Whenever possible the methods are
implemented as inline functions to minimize the e�ective runtime. An overview of the class declaration is shown
in Listing 1.

1 namespace SlimExcLib

2 {

3 class ExceptionState final

4 {

5 private:

6 unsigned char exceptionBuffer[__SLIM_EXC_BUFFER_SIZE] alignas(alignof(std::max_align_t));

7 InstanceType typeId;

8 void(*destruct)(const void*) noexcept;

9 ExceptionState* previousES = NULL;

10

11 enum State : uint8_t

12 {

13 CLEAR = 0,

14 HANDLERETHROW = 1,

15 HANDLETHROW = 2,

16 THROW = 3,

17 RETHROW = 4

18 } state = CLEAR;

19

20

21 template <class T> static inline bool compareAdresses(T& exception, void* bufferAdr) noexcept;

22

23 template<class T> static void destructorInvoker(const void* obj) noexcept;

24

25 void propagateUp() noexcept;

26 void takeInstance(ExceptionState* source) noexcept;

27 inline ExceptionState* getLatestHandlingExceptionState(void)noexcept;

28 template <class T> bool throwExceptionHelper(T& exc) noexcept;

29

30 public:

31 ExceptionState(ExceptionState* previous) noexcept;

32 ~ExceptionState() noexcept;

33

34 static ExceptionState* getCurrentExceptionState() noexcept;

35 static void setCurrentExceptionState(ExceptionState* newInstance) noexcept;

36

37

38 inline bool isExceptionInState(State state) noexcept;

39 inline bool isExceptionThrowing() noexcept;

40 inline void setToHandlingState() noexcept;

41 inline void setToThrowingState() noexcept;

42 inline void setToHandleRethrowState() noexcept;

43 inline void setToRethrowingState() noexcept;

44

45 inline void rethrow(void) noexcept;

46 template <class T> inline bool holdsExceptionOfTypeT() noexcept;

6

47 template <class T> inline void* getExceptionReference() noexcept;

48 template <class T> inline void throwException(T& exc) noexcept;

49 template <class T> inline void throwException(T&& exc) noexcept;

50 };

51 }

Listing 1: Declaration of the class �ExceptionState�

Attributes:

� exceptionBu�er: The raw bu�er where the exception object gets stored. The size �__SLIM_EXC_BUFFER_SIZE�
is set by the Slim-Exception-Plugin and can be de�ned in the con�guration.

� typeId: The type of the currently stored exception. The datatype of this attribute depends on the selected
RTTI-Implementation. This can also be de�ned in the con�guration.

� destruct: A pointer to the destructor of the currently stored exception.

� previousES:A pointer to the �ExceptionState�-instance of the next outer try-catch-block. All �ExceptionState�-
instances form a linked list which is required for rethrowing and exception propagation.

� state: An enumeration which de�nes the current Exception state. Listing 2 shows an example for each
state. Possible values are:

� CLEAR (line 1): Initial state. No exception is currently thrown or handled in this �ExceptionState�-
instance. A new exception can be thrown in this state.

� THROW (line 3 & 15): After a new exception is thrown the current �ExceptionState�-instance is
set to this state. It remains in this state until the exception is caught. This state is also used for
rethrowing if the current �ExceptionState�-instance holds the exception to rethrow. In this case the
current �ExceptionState�-instance get set from �HANDLETHROW� to �THROW� again.

� HANDLETHROW (line 5): After a new exception (current �ExceptionState�-instance in state
�THROW�) is caught, the current �ExceptionState�-instance is set to this state. It remains in this state
until the handling catch-Block is exited (by return, rethrow, new throw or by leaving the block after
reaching its end).

� RETHROW (line 9): This state is only used if a rethrow occurs, but the exception to rethrow is
not in the current �ExceptionState�-instance. In this case the linked list of �ExceptionState�-instances
is traversed to check if an instance lower down the list is in the state �HANDLETHROW�, and if so,
the current �ExceptionState�-instance is set to state �RETHROW�. Otherwise �std::terminate� will be
called.

� HANDLERETHROW (line 11): After a rethrown exception (current �ExceptionState�-instance in
state �HANDLERETHROW�) is caught, the current �ExceptionState�-instance is set to this state. The
exception object will be retrieved from the �ExceptionState�-instance lower down the linked list, which
is in state �HANDLETHROW� and thus contains the rethrown exception object. It remains in this
state until the handling catch-Block is exited (by return, rethrow, new throw or by leaving the block
after reaching its end).

1 try //Creates "ExceptionState"-Instance 1 (ES1) (ES1.state = CLEAR)

2 {

3 throw 200; //ES1.state = THROW, Buffer holds int(200)

4 }

5 catch(int& e) //ES1.state = HANDLETHROW

6 {

7 try //Creates "ExceptionState"-Instance 2 (ES2) (ES2.state = CLEAR)

8 {

7

9 throw; //rethrow "e". ES2.state = RETHROW

10 }

11 catch(int& e) //ES2.state = HANDLERETHROW

12 {

13 }

14

15 throw; //rethrow "e". ES1.state = THROW (Not RETHROW!)

16 }

Listing 2: Example code to show the usage of all the states

Methods:

� compareAdresses: (helper) Compares the addresses between a given Exception object and the bu�er of
this �Exception-State� instance. This is needed in case an explicit rethrow occurs within a catch-by-reference
block, in order to prevent copying an exception object into itself.

� destructorInvoker: (helper) Template function to invoke a destructor call on an anonymous object inter-
preted as object of type T. Gets used in combination with the �destruct�-attribute to correctly destroy the
exception object in the �exceptionBu�er� of this �ExceptionState�-instance.

� propagateUp: (helper) This method gets used when the lifetime of this �ExceptionState�-instance ends,
but it contains an active exception object which needs to be preserved in order to propagate up the callstack.
This method moves the current �ExceptionState�-instance into the previous instance (following the linked
list). In case the previous �ExceptionState�-instance is already in the state �THROWING�, or there is no
previous �ExceptionState�-instance, �std::terminate� gets called.

� takeInstance: (helper) Sets the internal state of this �ExceptionState�-instance to the one of another given
�ExceptionState�-instance. Gets used by �propagateUp�.

� getLatestHandlingExceptionState: (helper) Returns the most recent �ExceptionState�-instance which
is in state �HANDLETHROWING� from the linked list, excluding the current �ExceptionState�-instance.
Gets used to deal with states �RETHROW� and �HANDLERETHROW�.

� throwExceptionHelper: (helper) Used to set up the internal state of this �ExceptionState�-instance to
hold a new exception-Object. Returns �true� on success.

� ExceptionState: Constructor. Every time a new �ExceptionState�-instance is created, it adds itself to the
linked list and sets itself as the new current �ExceptionState�-instance by calling �setCurrentExceptionState�.

� ∼ExceptionState: Destructor. When the lifetime of this �ExceptionState�-instance ends, the previous
�ExceptionState�-instance gets set as current �ExceptionState�-instance again by calling �setCurrentExcep-
tionState�. If this �ExceptionState�-instance is in state �THROWING� or �RETHROWING�, �propagateUp�
gets called.

� getCurrentExceptionState: Implementation is up to the user, see subsubsection 4.1.4.

� setCurrentExceptionState: Implementation is up to the user, see subsubsection 4.1.4.

� isExceptionInState: Checks if this �ExceptionState�-instance is in a given state.

� isExceptionThrowing: Checks if this �ExceptionState�-instance is in state �THROWING� or �RETHROW-
ING�.

� setToHandlingState: Sets this �ExceptionState�-instance to state �HANDLETHROW�.

� setToThrowingState: Sets this �ExceptionState�-instance to state �THROW�.

8

� setToHandleRethrowState: Sets this �ExceptionState�-instance to state �HANDLERETHROW�.

� setToRethrowingState: Sets this �ExceptionState�-instance to state �RETHROW�.

� rethrow: Rethrows the currently handled Exception (implicit rethrow).

� holdsExceptionOfTypeT: Compares the type of the most recently thrown exception object in the linked
list (including the one from this �ExceptionState�-instance) to a given template parameter type. Returns
true if the template parameter type is a subtype or equal to the type of the exception object.

� getExceptionReference: Returns a pointer to the most recently thrown exception object. It also sets the
state of this �ExceptionState�-instance to �HANDLETHROW� or �HANDLERETHROW� respectively, as
this method gets called whenever a matching �catch�-block gets entered.

� throwException: Gets used to throw a new exception or to explicitly rethrow. There is a copy- and a
move-implementation which get used according to the exception-object's constructor de�nitions. In case a
move-constructor is de�ned, the exception object to throw gets passed as r-value reference to the method
to minimize the costs of copying the exception object into the �exceptionBu�er� of this �ExceptionState�-
instance.

3.2 Semantic code replacements

The classic exception handling mechanisms with its keywords �try�, �catch� and �throw� get implicitly replaced with
other inline code segments. This is realized recursively by the Slim-Exception-Plugin, which alters the Abstract
syntax tree (AST) of the program at compile time. The following section shows the e�ective Code replacements
for each case.

3.2.1 Try-catch-blocks

At the beginning of each new try-catch section a new ExceptionState-instance is created on the stack and attaches
itself to the end of the linked list of the current ExceptionState-instance (Line 2, Listing 3). Goto labels are created
for the start and end of the try section. These Labels have a unique post�x (�N�, Line 8 & 27) for each try-catch
block, to allow for multiple (possibly nested) try-catch blocks in the same function or method. If no exception
was thrown by the end of the try block, a goto to the end of the catch-section is executed (Line 7).
Each catch block gets turned into an if (or else if) to check if the type of the exception matches the catch-type
(Lines 10 & 16). The catch-all block is represented as �nal else-block without condition (Line 22). If the try-catch
block only has the catch-all block, no check is inserted.
The catch-by-reference catch (Line 12) uses a reference to the exception object which is stored in the exception-
bu�er of the current ExceptionState-instance, while the catch-by-value catch (Line 18) uses the Copy-Constructor
to create a new instance of the exception Object.

1 -> ExceptionState* __pCurFunctionExcState =

ExceptionState::getCurrentExceptionState();

2 try -> ExceptionState __esStore(__pCurFunctionExcState);

3 { -> {

4 //tryContent -> //tryContent (on throw: goto __startCatchLabelN;)

5 } -> }

6

7 -> goto __endCatchLabelN;

8 -> __startCatchLabelN:

9

10 catch(T& e) -> if(__esStore.holdsExceptionOfTypeT<T>())

11 { -> {

12 -> T& e = __esStore.getExceptionReference<T>();

9

13 //catchContent -> //catchContent

14 } -> }

15

16 catch(T e) -> else if(__esStore.holdsExceptionOfTypeT<T>())

17 { -> {

18 -> T e(__esStore.getExceptionReference<T>());

19 //catchContent -> //catchContent

20 } -> }

21

22 catch(...) -> else

23 { -> {

24 //catchContent -> //catchContent

25 } -> }

26

27 -> __endCatchLabelN:

Listing 3: Code replacement for a try-catch-block with di�erent kinds of catches

3.2.2 Throw expression

The exception object to throw gets moved into the currently valid ExceptionState-instance, which either is the
�__esStore� (Listing 4, Listing 5 & Listing 6), or the one retrieved by calling �ExceptionState::getCurrentExceptionState�
(Listing 7).
After the exception was thrown the execution of the function gets stopped by directly jumping to the handling
context, which is either the matching label of the catch section (Listing 4 & Listing 6), or the calling context
(Listing 5 & Listing 7), where it is handled as shown in subsubsection 3.2.4.

1 T e(); -> T e();

2 throw e; -> __esStore.throwException<T>(std::move(e));

3 -> goto __startCatchLabelN;

Listing 4: Throwing an exception directly in a try-block

1 T e(); -> T e();

2 throw e; -> __esStore.throwException<T>(std::move(e));

3 -> return;

Listing 5: Throwing directly in a catch-block which is not surrounded by an outer try-catch-block

1 T e(); -> T e();

2 throw e; -> __esStore.throwException<T>(std::move(e));

3 -> goto __startCatchLabelM; //label from outer try-catch-block

Listing 6: Throwing directly in a catch-block which is surrounded by an outer try-catch-block

1 -> ExceptionState* __pCurFunctionExcState = ExceptionState::getCurrentExceptionState();

2 T e(); -> T e();

3 throw e; -> __pCurFunctionExcState->throwException<T>(std::move(e));

4 -> return;

Listing 7: Throwing an exception in a function or method

3.2.3 Implicit rethrow expression

An implicit rethrow is implemented similarly to a direct throw (subsubsection 3.2.2), but the �rethrow� method is
called instead. (An explicit rethrow is identical to a direct throw).

10

1

2 throw; -> __esStore.rethrow();

3 -> return;

Listing 8: Rethrowing directly in a catch-block which is not surrounded by an outer try-catch-block

1

2 throw; -> __esStore.rethrow();

3 -> goto __startCatchLabelM; //label from outer try-catch-block

Listing 9: Rethrowing directly in a catch-block which is surrounded by an outer try-catch-block

1 -> ExceptionState* __pCurFunctionExcState = ExceptionState::getCurrentExceptionState();

2 throw; -> __pCurFunctionExcState->rethrow();

3 -> return;

Listing 10: Rethrowing an exception in a function or method

3.2.4 Calling potentially throwing functions or methods

After each call to a potentially throwing function or method (not marked as �noexcept�) a check is inserted. If an
exception was thrown, a direct jump to the handling context is executed, which is either the matching label of the
catch section (Listing 11 & Listing 13), or the calling context (Listing 12 & Listing 14). If the function or method
has a return value, it gets temporarily stored in a new variable (�__SLIM_EXC_pTmp�) and is only assigned
to the actual target variable if no exception was thrown.

1 x = foo(); -> auto __SLIM_EXC_pTmp = foo();

2 -> if(__esStore.isExceptionThrowing())

3 -> goto __startCatchLabelN;

4 -> x = __SLIM_EXC_pTmp;

Listing 11: Calling potentially throwing functions or methods directly in a try-block

1 x = foo(); -> auto __SLIM_EXC_pTmp = foo();

2 -> if(__esStore.isExceptionThrowing())

3 -> return;

4 -> x = __SLIM_EXC_pTmp;

Listing 12: Calling potentially throwing functions or methods directly in a catch-block which is not surrounded by
another try-catch-block

1 x = foo(); -> auto __SLIM_EXC_pTmp = foo();

2 -> if(__esStore.isExceptionThrowing())

3 -> goto __startCatchLabelM; //label from outer try-catch-block

4 -> x = __SLIM_EXC_pTmp;

Listing 13: Calling potentially throwing functions or methods directly in a catch-block which is surrounded by
another try-catch-block

1 -> ExceptionState* __pCurFunctionExcState = ExceptionState::getCurrentExceptionState()

2 x = foo(); -> auto __SLIM_EXC_pTmp = foo();

3 -> if(__pCurFunctionExcState->isExceptionThrowing())

4 -> return;

5 -> x = __SLIM_EXC_pTmp;

Listing 14: Calling potentially throwing functions or methods in another function or method

11

3.2.5 Additional notes

Return-statements: Everytime the Slim-Exception-Plugin needs to insert a �return� statement to exit the func-
tion or method as part of the code replacements, a �return;� without value is inserted. This is also true if
the function or method has a return type! In code this usually is not allowed but it is possible as direct
modi�cation of the AST. As this only occurs when an exception is thrown, the return value is not used and
thus the code is still safe and without side e�ects.

Call to �getCurrentExceptionState�: In every function or method where a reference to the currently valid
ExceptionState-instance is needed, it gets only retrieved once by calling �ExceptionState::getCurrentExceptionState�
at the beginning of the function or method.

3.3 Slim-Exception-Plugin

This chapter mainly addresses developers who wants to extend or �x bugs in the �SlimExc�-Plugin. It shows how
to get a proper toolchain for development, as well as an overview of the internal structure of the plugin.

3.3.1 Development toolchain

In order compile and debug the plugin, the sources of the GCC are needed. They can be downloaded from the
project site [6]. To get the related binaries, the sources have to be compiled. To do that, the systems version of
the GCC compiler must be installed. In Ubuntu this can be done with the following command:

1 sudo apt-get install build-essential

Next the binaries must be built. The needed commands can be found in the related documentation [4]. The
con�gure-command

1 ./configure --prefix=$HOME/GCC-10.3.0-release --disable-multilib --disable-libmpx

--enable-languages=c,c++

works well in Ubuntu with the GCC Version 10.3.0. With this command path �$HOME/GCC-10.3.0-release/bin�
is used for the resulting binaries.
Finally an Integrated Development Environment (IDE) is needed. �Eclipse-CDT� is recommended here. There is
a tutorial [3] which can be used to set up �Eclipse-CDT� for editing, compiling and debugging GCC plugins.

3.3.2 Used Plugin Callbacks

The �GCC plugin system� o�ers a lot of possibilities to alter the compilation process. For that, callbacks can be
registered by the plugin. The GCC calls the callbacks on the according compile-stages with some useful parameters.
A list of the available callbacks can be found at the GCC plugin documentation site [5]. The Slim-Exception-Plugin
currently uses the callbacks listed in Table 1.

Callback Usage
PLUGIN_INFO Registering an info-structure with the plugins version and help text

PLUGIN_START_UNIT Does some checks and set the plugin dependent de�ne directives
PLUGIN_PRE_GENERICIZE Does the code replacements listed in subsection 3.2
PLUGIN_FINISH_TYPE Checking the attributes of the Slim-Exception-Library

Table 1: List of used callbacks

12

3.3.3 Implementation of the AST modi�cations

As already mentioned in subsubsection 3.3.2 the ASTmodi�cations are done in the Callback �PLUGIN_PRE_GENERICIZE�.
This Callback o�ers a Tree-Node which refers to the AST of the currently parsed function or method. The class
�TreeParser� with the method �parse_tree� (in �TreeParser.hpp�) is used to traverse this AST. The �parse_tree�-
method can receive a callback-Function as parameter, which is called for every subnode of the AST. It is used
to print the AST as well as to modify it. The modi�cations are done in the class �ConvertTools�. Its method
�modifyAST� is used as callback for the �parse_tree�-method and does the modi�cation of the AST depending on
the type of the currently traversed node. In some cases with nested exception code structures (try, catch, ...), new
instances of the �ConvertTools�-class are created to traverse sub-trees of the AST. They can access their parent
instances through a linked list, which allows to retrieve relevant information about the context in some cases.

3.3.4 Compiletime errors and messages

In order to prevent faulty code and unde�ned behavior the Plugin analyses the AST for possible Errors and out-
puts matching compiletime messages:

Message Description
Multiple inheritance is not supported for exceptions! When a multiple inheriting class-instance gets thrown.
ExceptionState-Class is not available here. Please in-
sert the needed include (SlimExcLib.hpp) or exclude
the code with Filters

When an exception handling mechanism is used with-
out including the SlimExc-Library.

Current con�guration only allows fundamental types
for exception handling! The type X is not allowed!

When a non fundamental type is used while this func-
tionality is disabled in the con�guration (see subsec-
tion 4.2).

Current con�guration only allows type X for exception
handling! The type Y is not allowed!

When a wrong type is used while the con�guration only
allows a speci�c fundamental type as exception (see
subsection 4.2).

The current con�guration allows only to throw one
Type! Please only catch this one!

When multiple catch handlers exist while the con�g-
uration only allows one speci�c fundamental type as
exception (see subsection 4.2).

The type X does not �t in the exceptionBu�er! Maybe
you need to extend the Bu�er by Plugin-con�guration.

When a type is thrown which is larger than the
Exception-Bu�er which can be con�gured in the con-
�guration (see subsection 4.2).

An exception may leave a �noexcept�-section, which al-
ways results in std:terminate!

When an exception could be thrown inside a
�noexcept�-function. This can either happen by di-
rectly throwing or rethrowing inside a �noexcept�-
function, or by calling a function which is not marked
�noexcept�. This includes Constructors and Destruc-
tors as well. However, the C++-Standard allows it.*

Possibly uncaught Exceptions When a try-catch-block doesn't include a catch-all-
handler.*

* The level of this messages can be con�gured in the con�guration (subsubsection 4.2.1).

3.4 SlimRTTI-System

In order to catch exceptions polymorphycally a Runtime Type Information (RTTI)-System is required. Though
it is possible to use the standard RTTI-Implementation, that might not be desirable because it comes with a
signi�cant memory overhead for each object. For this reason the Slim-Exception-System o�ers an alternative
RTTI-Implementation which only has a minimal memory overhead for each type which gets thrown. This RTTI-
Implementation is only able to compare types at runtime, but does not support dynamic casting and re�ection.

13

It also does not support multiple and virtual inheritance.

3.4.1 Header overview

The entire SlimRTTI-System is implemented in the �le �SlimRTTI.hpp�, inside the namespace �SlimRTTI�. An
overview is given in Listing 3.4.1.

1 namespace SlimRTTI

2 {

3 template<typename T> inline void** getTypeId() noexcept;

4 template <typename T> inline constexpr uint8_t getPointerLevel() noexcept;

5 template <class T> static inline constexpr bool isInherited() noexcept;

6

7 class InstanceType

8 {

9 private:

10 void** typeId = nullptr;

11 union MetaData

12 {

13 uint16_t data;

14 struct Fields

15 {

16 uint8_t constMask;

17 uint8_t ptrDepth;

18 } fields;

19 } metaData = {};

20

21 public:

22 InstanceType() noexcept;

23 void inline clear() noexcept;

24 InstanceType& operator=(const InstanceType& other) noexcept;

25 template <class T> void set() noexcept;

26 template <class T> inline bool isEqualTo() noexcept;

27 template <class T> inline bool isDerivedOf() noexcept;

28 template <class T> inline bool isBaseOf() noexcept;

29 template <class T> bool do_catch() noexcept;

30 }

Functions in Namespace �SlimRTTI�:

� getTypeId: Returns a unique ID for the plain type of the template-speci�ed type. All Quali�ers (�&�, �*�,
�const� and �volatile�) are dismissed. See subsubsection 3.4.2 for more details on the implementation.

� getPointerLevel: Return the pointer level of the template-speci�ed type. References are not counted as
pointers. Types which are no pointer have a pointer level of 0.

� isInherited: Returns �true� if the template speci�ed type has a base class.

Classes in Namespace �SlimRTTI�:

� class InstanceType: This class represents the type of an instance at runtime. It includes the ID of the
plain type as well as it's pointer- and const-quali�ers.

Attributes in �InstanceType�:

� typeId: The ID of the plain type.

� metaData: Contains additional information about the pointer- and const-quali�ers.

14

* constMask: A bitmask which represents the constness for each pointer level and the constness for
the plain type. A �1� represents a const quali�er, a �0� it's absence. This bitmask is the reason the
maximal supported pointer level is 7.

* ptrDepth: This value represents the pointer level (the number of �*�) of the type.

Methods in �InstanceType�

� InstanceType: Constructor. Sets the instance to be empty, representing type �void�.

� clear: Sets the instance to be empty, representing type �void�.

� operator=: Assignment operator.

� set: Sets the instance to represent the template-speci�ed type, including it's pointer- and const-
quali�ers.

� isEqualTo: Compares the internally represented plain type to the template speci�ed type. All quali�ers
(�&�, �*�, �const� and �volatile�) are disregarded for this comparison. It returns true if the two plain
types are identical, no one being the base of the other.

� isDerivedOf: Checks if the internally represented plain type is derived from the template speci�ed
type. All quali�ers (�&�, �*�, �const� and �volatile�) are disregarded for this check. It returns true only
if the internally represented plain type is derived from the template speci�ed type, false if it is the other
way around or if the two types are identical.

� isBaseOf: Checks if the internally represented plain type is a base of the template speci�ed type. All
quali�ers (�&�, �*�, �const� and �volatile�) are disregarded for this check. It returns true only if the
internally represented plain type is a base of the template speci�ed type, false if it is the other way
around or if the two types are identical.

� do_catch: Checks if the internally represented plain type can be caught by a catch-clause with the
template speci�ed type. Pointer- and const-quali�ers are taken into account.

3.4.2 Generation of unique type-IDs

The core idea to generate unique IDs for each type is to use the address of a variable as number. This guarantees
the value to be system-wide unique and constant. It also allows the actual value of the variable to be used
otherwise. By declaring the variable as a pointer, it can point to the ID of it's basetype, which enables non-
multiple inheritance. If the type has no basetype, the pointer is just a nullptr. All IDs of a type hierarchy thus
form a linked list, which can be traversed for polymorphic type comparisons.
This mechanism is implemented in �getTypeId�, which is shown in Listing 3.4.2. As this template function gets
instantiated for each type �T�, a unique static const variable �id� is generated for each value of �T�. The linked list
of IDs for polymorphic types gets generated by calling itself recursively. Most of the terms in this function are
evaluated at compiletime, leaving only the return statements to be executed at runtime.

1 template<typename T> inline void** getTypeId() noexcept

2 {

3 //... remove all Qualifiers and Pointers from T...

4

5 if constexpr (std::tr2::direct_bases<T>::type::empty::value)

6 {

7 static void** const id = nullptr;

8 return reinterpret_cast<void**>(const_cast<void***>(&id));

9 }

10 else

11 {

12 typedef typename std::tr2::direct_bases<T>::type::first::type BaseType0;

13 static void** const id = getTypeId<BaseType0>();

15

14 return reinterpret_cast<void**>(const_cast<void***>(&id));

15 }

16 }

4. Usage

4.1 Environment

The Slim-Exception-System consists of the compiled GCC plugin (binary �SlimExc�), the Slim-exception handling
library (SlimExcLib) and 3 user de�ned functions (subsubsection 4.1.4).

4.1.1 GCC and Platform compatibility

The current version of the Slim-Exception-Plugin (0.9.0) is successfully tested with the following versions of the
GCC on the following platforms:

Target platform
Development platform

x64 Linux* x64 Windows

x64 Linux* 10.1.0, 10.2.0, 10.3.0,
10.4.0, 11.1.0, 11.2.0,
11.3.0

-

x64 Windows - -
ARM-none-eabi 10.3.1 -

* Tested on Ubuntu18.04 and OpenSUSE Tumbleweed

The same plugin-binary was used on all platforms. It is not unlikely the Slim-Exception-Plugin will also work
on other target platforms. However, it is con�rmed that GCC-Versions 9.* and 12.* do not work properly to full
extent. For testing it with unveri�ed GCC-versions the version check can be disabled as shown in Listing 19.

4.1.2 Toolchain

The g++ call scheme to compile your source-File with the Slim-Exception-Plugin is shown in Listing 15.

� The parameter �-fplugin� speci�es the Path to the Slim-Exception-Plugin Executable and enables its usage.

� The plugin parameters are listed in subsubsection 4.2.1. If not speci�ed, default values will be used.

� C++-17 or newer must be used.

� The optional GCC parameter �-fno-rtti� is used to disable the C++ runtime type information system. It
may only be used if the Slim-Exception-Plugin is con�gured to use its own SlimRTTI mechanism instead
(subsection 4.2).

� In order for the Slim-Exception-System to work properly it is necessary to keep the C++ standard exception
handling enabled. The �ag �-fno-exceptions� must not be used.

� All other GCC-Flags and GCC-Parameters as well as the linker can be used as usual.

1 g++ -fplugin={pathToPlugin}/SlimExc [plugin parameters] -std=c++17 [-fno-rtti] [other gcc parameters]

{pathToCppFile}

Listing 15: Call scheme of the C++-Compiler with the Slim-Exception-Plugin

16

4.1.3 Library

The Slim-Exception handling library needs to be included in all project �les which use exception handling mech-
anisms. It may be convenient to include the library in form of a git submodule (Listing 16).

1 git submodule add https://oko.spdns.de/git/admin/projects/oko/DeterministicExceptionHandlingLibrary

Listing 16: Command to add the library as git submodule to your project

4.1.4 User de�ned functions

In order for the system to function, the user is required to provide an implementation of the functions �Ex-
ceptionState::getCurrentExceptionState�, �ExceptionState::setCurrentExceptionState� in the namespace �SlimEx-
cLib� and �std::terminate� if not already de�ned.
The implementation must provide an initial ExceptionState object as well as an updatable pointer which ini-
tially points to the initial ExceptionState object for each thread. A minimal example implementation for a single
threaded system is shown in Listing 17.

� �SlimExcLib::ExceptionState::getCurrentExceptionState� must return a pointer to the active ExceptionState
object of the current thread.

� �SlimExcLib::ExceptionState::setCurrentExceptionState� must update the pointer to the active Exception-
State object of the current thread.

� �std::terminate� see https://en.cppreference.com/w/cpp/error/terminate

1 #include "SlimExcLib.hpp"

2

3 namespace SlimExcLib

4 {

5 ExceptionState baseExceptionState(NULL);

6 ExceptionState* pCurrentExceptionState = &baseExceptionState;

7

8 ExceptionState* ExceptionState::getCurrentExceptionState(void) noexcept

9 {

10 return pCurrentExceptionState;

11 }

12

13 void ExceptionState::setCurrentExceptionState(ExceptionState* newInstance) noexcept

14 {

15 pCurrentExceptionState = newInstance;

16 }

17 }

18

19 [[noreturn]] void std::terminate() noexcept

20 {

21 while(1){};

22 }

Listing 17: Minimal example implementation of the necessary user de�ned functions

4.1.5 Other dependencies

The Slim-Exception-System depends on a de�nition of the placement-new and placement-delete operator. Those
are declared as �extern� in the Slim-Exception-Library. Other than that there are no dependencies to the C++-
standard-library and the code can be compiled with the �-nodefaultlibs�-�ag.

17

https://en.cppreference.com/w/cpp/error/terminate

4.2 Con�guration

It is possible to change the behavior of the Slim-Exception-System by using either commandline parameters or a
XML-Con�guration File. The default con�guration is set to o�er a maximal standard-compatibility as described
in subsection 4.3. It is possible to restrict the features of the System for a possibly better performance and code
size.

4.2.1 Parameters

XML CMD-Parameter Values/Description
*-con�g= Path to XML-Con�guration-File

Exceptions/
SlimExceptions

*-f-SlimExc
*-fno-SlimExc

Enabled/Disabled
Enables/Disables the usage of the Slim-Exceptions (The
Plugin itself still remains enabled but the default
Exception-Code is not modi�ed)

Exceptions/
ThrowableTypes

*-ThrowableTypes= All - Maximal Functionality, allows throwing all In-
stances (most memory and runtime costs)
Fundamental - Restricts the system to only allow throw-
ing non-class-Types (reduced memory and runtime costs)
Single - Restricts the system to only allow throwing a sin-
gle Type, which is speci�ed by �SingleType�. (Minimal
memory and runtime costs)

Exceptions/
SingleType

*-SingleType= char, schar, uchar, ushort, short, uint, int, ulong,
long, ulonglong, longlong, �oat, double
De�nes the type which is allowed to be thrown if �Throw-
ableTypes�=�Single�.

Exceptions/
Bu�ersize

*-Bu�ersize= Range: 1 - n, Default: 10
The size of the Exceptionbu�er in Bytes.

RTTI/
SlimRTTI

*-f-SlimRTTI
*-fno-SlimRTTI

Enabled/Disabled
Enables/Disables the usage of the SlimRTTI-System for
the Exception-matching. If Disabled, the default RTTI-
System must be enabled instead (not using -fno-rtti).

RTTI/
PointerTypes

*-f-PointerTypes
*-fno-PointerTypes

Enabled/Disabled
Enables/Disables Pointer-Types in the SlimRTTI-
System. (Reduced memory and runtime costs if Disabled)

RTTI/
Quali�ers

*-f-Quali�ers
*-fno-Quali�ers

Enabled/Disabled
Enables/Disables Quali�ers (const) in the SlimRTTI-
System. If Disabled, const-Quali�ers are not taken into
account on Exception-matching! (Reduced memory and
runtime costs if Disabled)

18

Filters/
InitIgnoreFile

*-f-InitIgnoreFile
*-fno-InitIgnoreFile

Enabled/Disabled
Enables/Disables the initialization of the IgnoreFile with
a list of used Namespaces, Classes and Functions/Meth-
ods. If Enabled, the Slim-Exception-System is automati-
cally disabled. This can be used as a starting point for a
custom Blacklist/Whitelist to exclude partial code from
being handled with the Slim-Exception-System.

Filters/
InitFiltered

*-f-InitFiltered
*-fno-InitFiltered

Enabled/Disabled
Enables/Disables �ltering for the initialization of the Ig-
noreFile. If Enabled, the current Blacklist/Whitelist is
already applied to initialization.

Filters/
WhitelistStrategy

*-f-WhitelistStrategy
*-fno-WhitelistStrategy

Enabled/Disabled
Enabled = Whitelist
Disabled = Blacklist

Filters/
IgnoreFile

*-IgnoreFile= Default: empty
Path to the XML-Filter-File which is used as Black-
list/Whitelist to exclude partial code from being handled
with the Slim-Exception-System. This path is also used
for initializing the File when �InitIgnoreFile� is enabled.
If empty, �ltering is disabled completely.

Diagnostics/
WrongGCCVersion

*-WrongGCCVersion= Ignore, Info, Warning, Error
Message when the GCC-Version is not compatible with
the plugin binary. It might still work, so it is possible
to decrease the Diagnostic-Level. But this can lead to
undocumented problems!

Diagnostics/
StdTerminateOn
Exception

*-StdTerminateOn
Exception=

Ignore, Info, Warning, Error
Message when an exception is thrown which is never
caught, leading to a guaranteed call of �std::terminate�.

Diagnostics/
PossiblyUncaught
Exception

*-PossiblyUncaught
Exception=

Ignore, Info, Warning, Error
Message when an exception could propagate out of a non-
throwing region. This can be the case when a �try-catch�-
block within a �noexcept� section doesn't include a catch-
all handler.

Debugging/
Verbose

*-f-Verbose
*-fno-Verbose

Enabled/Disabled
Enables/Disables additional outputs while traversing the
AST.

Debugging/
GenerateAST

*-f-GenerateAST
*-fno-GenerateAST

Enabled/Disabled
Enables/Disables the printing of the AST. Two �les in
the Debugging-Directory are generated for each function,
one with the unmodi�ed and one with the modi�ed AST.

Debugging/
Directory

*-Debugging-Directory= Default: empty
Path to the Debugging-Directory, is used by �Gener-
ateAST�.

19

* Commandline Parameter Pre�x: -fplugin-arg-SlimExc
_ underlined: Default Values.

4.2.2 Examples

The following examples show the usage of some of the command line parameters:

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-config={pathToPluginConfig}/pluginConfig.xml

-std=c++17 -O3 -g3 -Wall -fno-rtti -c -o "myFile.o" myFile.cpp

Listing 18: Using the XML-Con�g-File

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-WrongGCCVersion=Warning -std=c++17 -c -o

"myFile.o" myFile.cpp

Listing 19: Using a di�erent GCC-Version (be aware, this can result in undocumented error-Messages)

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-IgnoreFile={pathToMyFilterFile}/ignore.xml

-fplugin-arg-SlimExc-f-InitIgnoreFile -std=c++17 -c -o "myFile.o" myFile.cpp

Listing 20: Generating found Entries in a Filter-File

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-IgnoreFile={pathToMyFilterFile}/ignore.xml

-fplugin-arg-SlimExc-f-WhitelistStrategy -std=c++17 -c -o "myFile.o" myFile.cpp

Listing 21: Using a Filter-File as Whitelist

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-ThrowableTypes=Single

-fplugin-arg-SlimExc-SingleType=short -std=c++17 -c -o "myFile.o" myFile.cpp

Listing 22: Allow only throwing �short�-Types

1 g++ -fplugin={pathToPlugin}/SlimExc -fplugin-arg-SlimExc-Debugging-Directory={pathToDirectory}

-fplugin-arg-SlimExc-f-GenerateAST -std=c++17 -c -o "myFile.o" myFile.cpp

Listing 23: Print the ASTs for Debugging in a Directory

4.2.3 Using �ltering to exclude Code sections

In order to exclude precompiled libraries or legacy code without �noexcept�-declarations it is possible to use an
ignore�le (as shown in Listing 21).
To avoid having to write the ignore�le manually, it is possible to use the �initIgnoreFile�-Option as shown in
Listing 20. This initializes the ignore�le's XML-Structure and generates a list of all Namespaces, Classes and
Functions which can be copy-pasted into the blacklist/whitelist section of the ignore�le.
Adding an empty XML-Tag for a Namespace or a Class selects everything inside of this Namespace or Class as
well.

4.3 Deviations from C++-Standard

The following deviations are based on the assumption that Slim-Exception-Plugin is con�gured with its default
values which represent the full function range. It is possible to reduce the function range and thus the C++
standard conformity in favor of better performance in the con�guration (subsection 4.2).

20

4.3.1 Working with precompiled code

If standard exception are thrown from precompiled code (without the Slim-Exception-Plugin), those can not be
handled by the Slim-Exception-System! Equally no exceptions from the Slim-Exception-System can be handled
by precompiled code! Further it is highly recommended to exclude all precompiled code by the �ignoreList�
con�guration in order to avoid unnecessary runtime overhead (subsubsection 4.2.1).

4.3.2 Multiple and virtual inheritance

Multiple and virtual inheritance is currently not supported for classes which get thrown as exception objects by
the system.

4.3.3 Noexcept keyword

To minimize the runtime overhead it is highly recommended to use the o�cial C++ keyword �noexcept� on all
function and method de�nitions which do not throw. Unlike the C++ standard behavior, the Slim-Exception-
System does not allow exceptions to propagate through functions or methods which are marked as �noexcept�.

4.3.4 �Extern C� is treated as �noexcept�

All functions declared as �extern C� are treated as if declared �noexcept(true)�. Throwing from �extern C�-Functions
is not allowed with the Slim-Exception-System.

4.3.5 Stack unwinding in case of std::terminate

When a condition is met which leads to a call of �std::terminate�, the call is immediately executed without a
preceding stack unwinding. Thus, the objects on the stack don't get properly destructed. In practice this should
not be a problem, because a call to �std::terminate� ends the execution of the program. However, if the Destructors
are used to disable some physical periphery this can be a critical deviation from the standard. It is recommended
to implement all necessary hardware shutdowns in the �std::terminate�-routine.
In [1, page 8] it is argued that the current c++-standard for exception handling cannot be implemented in a space-
and time-deterministic manner, because there is no upper bound to the number of active exceptions at any given
point in time. By introducing the above deviation from the standard, the upper bound for the number of active
exceptions is set to be equal to the number of nested try-Blocks in the system.

4.3.6 Exception Size limit

The size of all thrown exception object must be lower or equal to the con�gured Bu�er Size (bu�ersize in con�g-
uration subsubsection 4.2.1).

4.3.7 Maximal pointer depth

If the SlimRTTI-System is used, the maximal pointer depth of thrown exceptions is 7.

4.4 Known issues

� On arm-none-eabi systems, an Implementation of the functions �__aeabi_unwind_cpp_pr0� and �__ae-
abi_unwind_cpp_pr1� is required but may be left empty.

21

4.5 Bug reporting

If any bugs are encountered, please follow these instructions to �le a report:

1. Compile the program without the Slim-Exception-System and verify it's correctness to make sure the error
actually is in the Slim-Exception-System.

2. Extract a minimal example which reproduces the bug from your code.

3. Send an E-Mail including

� the minimal code example

� a description of the bug

� the version numbers of SlimExc and GCC

� the target- and build platforms

� any possibly occurring compiler- or runtime errors

to developer@philipp-rimmele.de

5. Benchmarks

All benchmarks were recorded on a �STM32F4�-Microcontroller (arm-none-eabi) with the default con�guration
(subsection 4.2). As of now, only the code size and runtime of individual statements were compared. A more
in-depth investigation of the e�ective performance on larger examples as well as ram memory usage is still to be
conducted. All measured values are samples from a minimal example.

5.1 Code size

Comparison between the code size of di�erent exception statements:
Optimization O0 Optimization O3

Default SlimExc Default SlimExc
Exception Library 12391 156 12340 84

Try-catch-all 8 28 4 20
Try-catch�throw-instance 36 80 36 88

Throw int 0 82 36 60
Rethrow int 0 12 8 44

Call of throwing function 4 20 4 12
All values in bytes.

The benchmarks show that the default implementation has a more signi�cant code size overhead upon it's initial
usage due to it's library size, while the SlimExc implementation has a larger code size overhead for each exception
statement. The overall code size will thus heavily depend on the project size and the number of exception
statements.
The SlimExc-System allows to compile the project without default-libraries, which account for the major library
size overhead on the default exception system.

5.2 Execution speed

Comparison between the runtime of di�erent exception statements:

22

Optimization O0 Optimization O3
Default SlimExc Default SlimExc

Entry in try-block 3 151 0 37
Exit from try-block 4 176 0 62

Full try-block 4 300 0 97
Function call 26 61 16 34
Throw int
�catch all

4904 437 5100 57

Throw int
�catch int

6044 569 5587 86

Throw instance
�catch instance

6796 635 6305 90

Throw instance from function
�catch instance

9768 708 7960 123

Throw instance
�propagate up
�catch all

5637 1391 7125 208

Rethrow int implicite
�catch all

6801 883 6530 144

All values are processor-ticks on a �STM32F4�-Microcontroller.

The benchmarks show that the default implementation has a major runtime overhead on the error path and
nearly no overhead on the success-path, while the SlimExc implementation has a more evenly distributed runtime
overhead.

6. The future of SlimExc

The current version of SlimExc was developed without any funding just as hobby- and research project. Though
it is fully functional, there are many possibilities for future optimizations and improvements which we would like
to develop if any funding opportunities occur. The following list of possible ideas is non-exhaustive:

� Quality assurance: Restructure and extend tests and set up continuous integration.

� Quality assurance: Continuous bug �xing and maintenance.

� Compatibility: Support other development- and target platforms.

� Compatibility: Support other GCC-Versions.

� Optimization: Compiler Warning/Error for functions which are not throwing but also not marked as
�noexcept�.

� Optimization: Many performance and code size optimizations for various cases.

� Con�guration Option: De�ne �noexcept(true)� to be the default-value for all functions.

� Con�guration Option: O�er an alternative implementation of the �ExceptionState�-class which allows the
usage of dynamic memory allocation for the exception object (for example a deterministic memory pool).

� Con�guration Option: Make maximally supported pointer depth con�gurable with SlimRTTI.

� Feature: Support multiple inheritance for exception objects.

23

� Feature: Automatic generation of wrapper functions for precompiled code with default exceptions for better
compatibility with external libraries.

� Feature: Extend SlimRTTI for more use cases outside of exception handling.

24

Acronyms

AST Abstract syntax tree. 9, 12, 13, 19, 24

GCC GNU Compiler Collection. 4, 12, 15, 16, 24

IDE Integrated Development Environment. 12

RTTI Runtime Type Information. 13

25

Bibliography

[1] Herb Sutter. Zero-overhead deterministic exceptions: Throwing values. https://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2018/p0709r0.pdf. 2018.

[2] Nico Brailovsky. C++ Exception Handling Internals. https://monoinfinito.wordpress.com/series/
exception-handling-in-c/.

[3] Stephan Friedl. Tutorial to set up Eclipse for GCC plugin debugging. https://stephanfr.com/2013/05/19/
building-gcc-plugins-part-1-c-11-generalized-attributes/.

[4] GCC installing documentation. https://gcc.gnu.org/wiki/InstallingGCC.

[5] GCC plugin documentation. https://gcc.gnu.org/onlinedocs/gcc-4.5.0/gccint/Plugins.html.

[6] GCC Project site. https://gcc.gnu.org/.

[7] Björn Frankec James Renwick Tom Spink. �Low-Cost Deterministic C++ Exceptions for Embedded Systems�.
In: Proceedings of the 28thInternational Conference on Compiler Construction (CC '19), February 16�17,2019,
Washington, DC, USA.ACM, New York, USA (2019). https://www.research.ed.ac.uk/portal/files/
78829292/low_cost_deterministic_C_exceptions_for_embedded_systems.pdf.

[8] Daniel Marjamäki. https://github.com/danmar/gcc-plugins/blob/master/dump-tree-xml/dump-
tree-xml.c.

[9] Herb Sutter. https://herbsutter.com/2016/09/25/to-store-a-destructor/. 2016.

26

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0709r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0709r0.pdf
https://monoinfinito.wordpress.com/series/exception-handling-in-c/
https://monoinfinito.wordpress.com/series/exception-handling-in-c/
https://stephanfr.com/2013/05/19/building-gcc-plugins-part-1-c-11-generalized-attributes/
https://stephanfr.com/2013/05/19/building-gcc-plugins-part-1-c-11-generalized-attributes/
https://gcc.gnu.org/wiki/InstallingGCC
https://gcc.gnu.org/onlinedocs/gcc-4.5.0/gccint/Plugins.html
https://gcc.gnu.org/
https://www.research.ed.ac.uk/portal/files/78829292/low_cost_deterministic_C_exceptions_for_embedded_systems.pdf
https://www.research.ed.ac.uk/portal/files/78829292/low_cost_deterministic_C_exceptions_for_embedded_systems.pdf
https://github.com/danmar/gcc-plugins/blob/master/dump-tree-xml/dump-tree-xml.c
https://github.com/danmar/gcc-plugins/blob/master/dump-tree-xml/dump-tree-xml.c
https://herbsutter.com/2016/09/25/to-store-a-destructor/

Credits and licenses

Acknowledgments to

� Herb Sutter for his theoretical analysis of the C++ exception system [1] and his cool trick to get destructor
pointers [9].

� James Renwick, Tom Spink and Björn Franke for their proof of concept [7].

� Stephan Friedl for his helpful GCC plugin debugging tutorial [3].

� Daniel Marjamäki for his reference implementation of the GCC AST traversion [8].

� Yves Berquin for the TinyXPath-Library which is used by the SlimExc-Plugin.

SlimExc is created by and belongs to Philipp Rimmele & Valentin Felder (2023).

� The SlimExc-Plugin is licensed under GPLv3.

� The SlimExc-Library is licensed under BSD-3-Clause.

� This Document is licensed under CC BY-SA.

27

https://tinyxpath.sourceforge.net/
https://www.gnu.org/licenses/gpl-3.0.de.html
https://opensource.org/license/bsd-3-clause/
https://creativecommons.org/licenses/by-sa/3.0/

	Motivation
	Status quo
	The goal of SlimExc

	Working principle
	Return based approach
	Exception storage on the stack
	Runtime and memory behavior

	Implementation
	Slim-Exception-Library
	Semantic code replacements
	Try-catch-blocks
	Throw expression
	Implicit rethrow expression
	Calling potentially throwing functions or methods
	Additional notes

	Slim-Exception-Plugin
	Development toolchain
	Used Plugin Callbacks
	Implementation of the AST modifications
	Compiletime errors and messages

	SlimRTTI-System
	Header overview
	Generation of unique type-IDs

	Usage
	Environment
	GCC and Platform compatibility
	Toolchain
	Library
	User defined functions
	Other dependencies

	Configuration
	Parameters
	Examples
	Using filtering to exclude Code sections

	Deviations from C++-Standard
	Working with precompiled code
	Multiple and virtual inheritance
	Noexcept keyword
	''Extern C'' is treated as ''noexcept''
	Stack unwinding in case of std::terminate
	Exception Size limit
	Maximal pointer depth

	Known issues
	Bug reporting

	Benchmarks
	Code size
	Execution speed

	The future of SlimExc
	Acronyms
	Bibliography
	Credits and licenses

